Сечения n-мерного куба
Apr. 23rd, 2011 02:21 am![[personal profile]](https://www.dreamwidth.org/img/silk/identity/user.png)
Узнал на конференции один довольно удивительный факт. Представьте себе вначале квадрат со стороной 1 и прямую, которая его пересекает. Какова наибольшая длина сечения?
Ответ угадать несложно: корень из двух. "Как бы понятно", что длиннее всего выйдет, если резать вдоль диагонали. Доказать это тоже нетрудно, разумеется.
Теперь представьте себе n-мерный единичный куб, который рассекает гиперплоскость. Вопрос тот же: каков максимальный (n-1)-мерный объем сечения?
Кажется, что ответ обязан зависеть от n (например, диагональ куба имеет длину корень из n), но на самом деле он тот же - квадратный корень из двух. Это теорема Болла, и в оригинальной статье она доказывается при помощи разных хитрых аргументов, а в конце концов сводится к аккуратной оценке интеграла от (sin x/x)p от минус до плюс бесконечности (что весьма нетривиально, как это ни удивительно). Вроде бы есть альтернатиный простой аргумент, но там слегка машут руками, так что автор не вполне уверен в его аккуратности.
Всё это еще раз доказывает, что наша интуиция касательно многомерных пространств часто совершенно неверна.
Ответ угадать несложно: корень из двух. "Как бы понятно", что длиннее всего выйдет, если резать вдоль диагонали. Доказать это тоже нетрудно, разумеется.
Теперь представьте себе n-мерный единичный куб, который рассекает гиперплоскость. Вопрос тот же: каков максимальный (n-1)-мерный объем сечения?
Кажется, что ответ обязан зависеть от n (например, диагональ куба имеет длину корень из n), но на самом деле он тот же - квадратный корень из двух. Это теорема Болла, и в оригинальной статье она доказывается при помощи разных хитрых аргументов, а в конце концов сводится к аккуратной оценке интеграла от (sin x/x)p от минус до плюс бесконечности (что весьма нетривиально, как это ни удивительно). Вроде бы есть альтернатиный простой аргумент, но там слегка машут руками, так что автор не вполне уверен в его аккуратности.
Всё это еще раз доказывает, что наша интуиция касательно многомерных пространств часто совершенно неверна.
no subject
Date: 2011-04-24 07:05 pm (UTC)